 |
|
|
| |
|
應用人工智慧分析技術探勘高風險路段(1/4)—駕駛行為模式研析及車外異常事件影像辨識技術發展[111綠]
|
|
|
|
|
|
出版日期:2022-06-01
|
|
ISBN:9789865314163
|
|
定價:550元
特價:90折!495元
|
|
|
|
參考分類(CAT):公共工程/交通
|
|
參考分類(CIP): 交通
|
|
|
|
|
|
|
|
|
內容簡介 過去由於鮮少蒐集駕駛過程的資料,在肇因判斷上多以事故發生當下的近因為主,然近因並不一定為肇事主因,僅預防近因也未必能有效預防肇事。本計畫之目標在將目前以事故資料為基礎的道路交通安全管理程序,提升為以事故資料、異常事件以及駕駛行為為基礎的道路交通安全管理程序。本計畫為四年期計畫之第一年計畫,以車外影像分析為主;主要工作內容在應用影像辨識技術,藉由車外行車影像資料分析篩選異常事件,並據以找出可能造成事件及提高事故風險的高風險駕駛行為。
本期計畫首先訪談財團法人車輛安全審驗中心及九家客貨運業者與設備商,同時以問卷調查25家國內客運業者,了解先進駕駛輔助系統(ADAS)之法規趨勢,以及業者對ADAS設備之應用現況與需求。接著透過事故分析與文獻回顧,定義未保持安全距離、車道偏移、過彎或匝道車速過快等三大類國道客運常見異常事件;各類事件並依各種可能發生情境,衍生成數個事件發生序列與子序列,同時依照事件發生當下之危險程度、與前車相對距離以及駕駛人因應動作等三個準則,定義異常事件之三個風險等級:不為異常、可能異常、異常。
本計畫接著發展車外影像辨識分析架構,橫向以車道、縱向以20公尺為單位,以本車為核心劃分出行車動態12宮格,並發展每一宮格之影像辨識指標,例如該格位車輛與本車相對距離、該格位是否有大車等。透過Canny邊緣檢測、Cascade Mask R-CNN、YOLO (You Only Look Once)等演算法的發展,進行實際影像的辨識訓練。透過近兩萬幀影像真值的比對,本計畫發展之影像辨識演算法,在各宮格各指標之辨識正確率可達九成或以上;但在匝道、該格位有三台車或以上、雨天以及本車低速行駛下,正確率可能下降至六到八成。
經分析本計畫蒐集國內某客運業200趟次行車資料、2,531個警示事件,其中僅有102件(約4%)的警示事件為異常事件;若客運業者單純以ADAS設備警示,做為行車即時警示或事後駕駛教育訓練之參考,恐存在偽陽性過高的情況。經XGBoost分析發現,以影像為主之異常事件預測召回(recall)率與以ADAS為主之異常事件預測召回率相仿,可見本研究提出之12宮格架構,的確可有效分析國道客運行車動態異常。若將ADAS及影像資料同時納入預測模式,可進一步提高異常事件之預測準確度。另經由時空分析結果發現,內側路肩窄、直線段未保安距警示較多,事故亦較多;駕駛資歷豐富即使發生異常事件,其嚴重程度相對較輕,但72小時內排班越多,若發生異常事件的嚴重度則可能較為嚴重。 目次 第一章 緒論 1
1.1 計畫緣起 1
1.2 計畫目的 4
1.3 計畫工作項目 5
1.4 計畫範圍與整體架構及流程 6
第二章 文獻回顧 13
2.1 自然駕駛與異常事件研究 13
2.2 前期計畫回顧 17
2.3 駕駛行為分析之影像辨識技術 25
2.4 道路交通事故地理資訊系統與行車影像辨識應用 30
2.5 車載設備與行車影像紀錄器國內外規範與應用 43
2.6 道路交通事故空間分析 55
第三章 利害關係人調查與訪談 63
3.1 國內市場概況 63
3.2 問卷設計與調查 68
3.3 利害關係人訪談結果 71
3.4 業者問卷調查分析及前後期比較 84
3.5 小結 91
第四章 國道交通事故資料分析 95
4.1 事故資料分析 95
4.2 國道事故影像事故鏈分析 112
第五章 車外異常事件定義與衡量指標發展 125
5.1 車外異常事件定義 125
5.2 車外異常事件採用之衡量指標 137
5.3 小結 145
第六章 車外異常事件影像辨識技術開發 147
6.1 車外異常事件辨識架構與流程:12 宮格影像辨識 147
6.2 車外異常事件影像辨識技術 150
6.3 智慧車載設備及行車影像紀錄器之功能限制 165
6.4 建立車外行車影像辨識之設備分析 173
6.5 小結 176
第七章 影像盤點及異常事件分析 179
7.1 影像盤點統計分析 179
7.2 類真值分析 192
7.3 異常事件預測 201
7.4 小結 208
第八章 異常事件時空分析 211
8.1 整合資料庫之建立 211
8.2 高速公路高風險路段時空分析 215
8.3 高速公路風險路段時空分析平台 233
8.4 駕駛風險指跡分析 238
8.5 小結 252
第九章 結論與建議 255
9.1 結論 256
9.2 建議 259
1、五南網路會員所購買的商品均享有取貨7天的鑑賞期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。
2、依照消費者保護法規定,凡消費者於網站購物均享有7天商品鑑賞期,唯需注意辦理退貨商品需保留完整外包裝、附件、外盒等等,才可辦理退貨。
3、如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。
4、鑑賞期非試用期,若您收到商品經檢視後有任何不合意之處,請立即依照退貨規定辦理退貨
1、若本網站已設團購價,請直接下訂即可。
2、如您需要其他類型產品團購,則請聯繫客服或直接將需求e-mail
至wunan2351960@gmail.com即可
一、購物說明 1.本站商品近60萬筆。(商品圖片、出版日期等相關資訊僅供參考,出貨一律是最新版本) ◎請注意:上架商品不等於一定可以出貨。(會有缺書而訂不到書的狀況,敬請體諒) 2.當您下訂時,我們會向出版訂書(約7-10個工作天)(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。如有久候,敬請見諒。當出版社回覆缺書時,我們只能取消您的訂單。 3.當您下訂時您必須同意:訂單成立的第14天起,因缺某一本書無法出貨的訂單,本站有權利自動取消您的訂單。◎請注意:缺書取消訂單我們統一發送簡訊通知。如果您要部份出貨者,請留言後再重新下單。 4.、本站保留出貨的權利。 二、運費說明 1.宅配到府:滿999元免運費,未滿則加收65元(台灣本島),離島一律加收120元 2.五南門市取貨:未滿350,運費20元 3.揪團:免運費 三、退貨與退款說明 五南會員所購買的商品均享有取貨7天的猶豫期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。 1.請注意!下列商品購買後不提供7天的猶豫期,請務必詳閱商品說明並再次確認確實有購買該項商品之需求及意願時始下單購買,有任何疑問並請先聯繫客服詢問: (1)客製化之商品。 (2)買斷不退之商品。 (3)報紙、期刊或雜誌。 (4)經消費者拆封之影音商品或電腦軟體。 (5)下載版軟體、資訊及電子書。 (6)涉及個人衛生,並經消費者拆封之商品,如:內衣褲、刮鬍刀…等。 (7)藝文展覽票券、藝文表演票券。 (8)易於腐敗、保存期限較短或解約時即將逾期。 2.退貨退款詳細說明: (1)如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。 (2)退換貨政策:請在收到商品後,立刻檢查商品是否正確,如果有問題或瑕疵,請於7天猶豫期內完成退換貨申請手續。辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 (3)退款說明:請您填寫退貨退款書,若您採信用卡付款,由客服人員辦理刷退手續。若採其他付款方式,我們會將退款,匯款至指定帳戶。以上需要14個工作天。 (4)退貨退款書請至【客服中心】點選『退換商品】的說明中下載。
1.每日09:00前截止訂單,包含出貨通知、缺書通知等。 3.上午9:00點以前下單,可在當日下午17:00以後,查詢出貨進度。例假日除外 4.上午9:00以後在下單,需在隔日17:00以後,方能查詢訂單出貨進度。例假日除外 5.當你使匯款或轉帳時,請務必提供帳戶末5碼之資訊,請拍照email或傳真給我方,否則須等與銀行確認後,才能出貨。 6.出貨是以下單時間為出貨先後的順序,也就是請先下單再查詢庫存,因為就算查完庫存,也可能無法先為你保留書籍(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。
|
|
|
|
|
|
 |
應用人工智慧分析技術探勘高風險路段(1/4)—駕駛行為模式研析及車外異常事件影像辨識技術發展[111綠]
出版日期:2022-06-01
ISBN:9789865314163
定價:550元
特價:90折!495元
參考分類(CAT):公共工程/交通
參考分類(CIP): 交通