機器學習與人工智慧深度問答集:從基礎到專業,提升AI知識力的30道深度思考題
出版日期:2024-08-25
ISBN:9786263339248
定價:650元
特價: 90 折!585 元
參考分類(CAT):
參考分類(CIP): 電腦科學
內容簡介
暢銷書《Python機器學習》作者Sebastian Raschka又一原創力作!
『在本書中,Sebastian帶領讀者深入了解他們在成為專家路上可能遇到的各種中階和高階應用機器學習主題。Sebastian無疑是這個領域最優秀的機器學習教育工作者之一。在每一頁中,Sebastian不僅分享他的豐富知識,也傳達象徵著真正專業的熱情與好奇心。……讓本書成為你晉級下一個階段的橋樑,協助你在機器學習中獲得更豐富的冒險和體驗。』
——Chris Albon,維基媒體基金會 機器學習總監 專文推薦
★本書特色★
市面上大多數的機器學習、深度學習與AI書籍,都位於兩個極端:不是介紹基礎知識的入門指南,就是艱澀難懂的論文大全。在學習完基礎知識、閱讀完初階書籍之後,還想了解更多新觀念和進階技術嗎?作者說明並討論了這些領域的重要發展,同時保持平易近人,讀者不需要擁有進階數學或程式設計背景也能閱讀。全書分為5大篇,共30章,涵蓋30個不同主題。讀者可以依序閱讀,也可以跳著閱讀(但作者建議依序閱讀,由淺入深),更適合隨時拿出來配著咖啡或在通勤時翻閱。
本書非常適合那些已經完成機器學習或深度學習的基礎課程,或是讀完同等程度初階書籍的人。本書採用獨特的問答風格(Q&A style),每個簡短的章節都圍繞著一個核心問題展開,這些問題不僅與機器學習、深度學習和AI的基礎觀念相關,更是作者在教學過程中,學生們經常提出的疑問。每個問題後面都附有解釋,並配有許多插圖和圖表,以及測試理解能力的練習題。許多章節還提供了進一步閱讀的參考資料。這些簡短、容易消化的資訊提供了一個激勵人心的起點,幫助讀者踏出成為機器學習專家的第一步,開啟一段新的學習旅程。
★內容亮點★
・獨立章節:簡潔又精準地回答AI中的關鍵問題,化繁為簡。
・主題廣泛:涵蓋神經網路架構、模型評估、電腦視覺、自然語言處理等。
・實際應用:學會提升模型效能、微調大型模型等重要技術。
★學習重點★
・管理神經網路訓練中的各種隨機性來源
・區分大型語言模型的編碼器架構和解碼器架構
・利用數據和修改模型來減少過度適合
・為分類器建立信賴區間,利用有限標籤數據改善模型效能
・在不同的多GPU訓練範式和各種生成式AI模型之間做出選擇
・理解自然語言處理的效能指標
・理解視覺變換器中的歸納偏誤
【下載補充材料範例程式碼】
https://github.com/rasbt/MachineLearning-QandAI-book
作者介紹
Sebastian Raschka博士是一位對教學懷抱強烈熱忱的機器學習和AI研究者。身為Lightning AI的Lead AI Educator(首席AI教育家),他熱衷於使AI和深度學習變得更加普及,並教導人們如何大規模地利用這些技術。在全力投入Lightning AI之前,Sebastian曾在University of Wisconsin-Madison(威斯康辛大學麥迪遜分校)擔任統計學助理教授,專門研究深度學習和機器學習。你可以造訪他的網站,了解更多他的研究資訊:https://sebastianraschka.com。
✍審校者簡介✍
劉立民教授、紐澤西理工學院資訊博士(1999)。目前任教於世新大學資訊傳播學系/資訊管理學系;曾任世新大學資訊管理學系主任。學術生涯迄今發表二十餘篇期刊論文,研究領域包括:人工智慧、語意網、演算法、影像處理等等。譯有《Python深度學習》、《Python機器學習》以及《動手做深度強化學習》。
目次
獻詞
作者簡介
推薦序
致謝
前言
Part I:神經網路與深度學習
Chapter 01:嵌入、潛在空間和表示
Chapter 02:自監督學習
Chapter 03:少樣本學習
Chapter 04:樂透彩券假說
Chapter 05:利用數據來減少過度適合
Chapter 06:修改模型來減少過度適合
Chapter 07:多GPU訓練範式
Chapter 08:變換器的成功
Chapter 09:生成式AI模型
Chapter 10:隨機性來源
Part II:電腦視覺
Chapter 11:計算參數的數量
Chapter 12:完全連接層與卷積層
Chapter 13:視覺變換器(ViT)的大型訓練集
Part III:自然語言處理
Chapter 14:分布假說
Chapter 15:文字的數據增強
Chapter 16:自注意力
Chapter 17:編碼器和解碼器風格的變換器
Chapter 18:使用和微調預訓練的變換器
Chapter 19:評估生成式大型語言模型
Part IV:生產與部署
Chapter 20:無狀態訓練和有狀態訓練
Chapter 21:以數據為中心的AI
Chapter 22:加速推理
Chapter 23:數據分布偏移
Part V:預測效能與模型評估
Chapter 24:Poisson與有序迴歸
Chapter 25:信賴區間
Chapter 26:信賴區間vs.共形預測
Chapter 27:合適的指標
Chapter 28:k折交叉驗證中的k值
Chapter 29:訓練集和測試集的不一致
Chapter 30:有限標籤數據
後記
附錄:練習題解答
術語中英對照表
1、五南網路會員所購買的商品均享有取貨7天的鑑賞期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。
2、依照消費者保護法規定,凡消費者於網站購物均享有7天商品鑑賞期,唯需注意辦理退貨商品需保留完整外包裝、附件、外盒等等,才可辦理退貨。
3、如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。
4、鑑賞期非試用期,若您收到商品經檢視後有任何不合意之處,請立即依照退貨規定辦理退貨
1、若本網站已設團購價,請直接下訂即可。
2、如您需要其他類型產品團購,則請聯繫客服或直接將需求e-mail
至wunan2351960@gmail.com即可
一、購物說明 1.本站商品近60萬筆。(商品圖片、出版日期等相關資訊僅供參考,出貨一律是最新版本) ◎請注意:上架商品不等於一定可以出貨。(會有缺書而訂不到書的狀況,敬請體諒) 2.當您下訂時,我們會向出版訂書(約7-10個工作天)(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。如有久候,敬請見諒。當出版社回覆缺書時,我們只能取消您的訂單。 3.當您下訂時您必須同意:訂單成立的第14天起,因缺某一本書無法出貨的訂單,本站有權利自動取消您的訂單。◎請注意:缺書取消訂單我們統一發送簡訊通知。如果您要部份出貨者,請留言後再重新下單。 4.、本站保留出貨的權利。 二、運費說明 1.宅配到府:滿999元免運費,未滿則加收65元(台灣本島),離島一律加收120元 2.五南門市取貨:未滿350,運費20元 3.揪團:免運費 三、退貨與退款說明 五南會員所購買的商品均享有取貨7天的猶豫期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。 1.請注意!下列商品購買後不提供7天的猶豫期,請務必詳閱商品說明並再次確認確實有購買該項商品之需求及意願時始下單購買,有任何疑問並請先聯繫客服詢問: (1)客製化之商品。 (2)買斷不退之商品。 (3)報紙、期刊或雜誌。 (4)經消費者拆封之影音商品或電腦軟體。 (5)下載版軟體、資訊及電子書。 (6)涉及個人衛生,並經消費者拆封之商品,如:內衣褲、刮鬍刀…等。 (7)藝文展覽票券、藝文表演票券。 (8)易於腐敗、保存期限較短或解約時即將逾期。 2.退貨退款詳細說明: (1)如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。 (2)退換貨政策:請在收到商品後,立刻檢查商品是否正確,如果有問題或瑕疵,請於7天猶豫期內完成退換貨申請手續。辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 (3)退款說明:請您填寫退貨退款書,若您採信用卡付款,由客服人員辦理刷退手續。若採其他付款方式,我們會將退款,匯款至指定帳戶。以上需要14個工作天。 (4)退貨退款書請至【客服中心】點選『退換商品】的說明中下載。
1.每日09:00前截止訂單,包含出貨通知、缺書通知等。 3.上午9:00點以前下單,可在當日下午17:00以後,查詢出貨進度。例假日除外 4.上午9:00以後在下單,需在隔日17:00以後,方能查詢訂單出貨進度。例假日除外 5.當你使匯款或轉帳時,請務必提供帳戶末5碼之資訊,請拍照email或傳真給我方,否則須等與銀行確認後,才能出貨。 6.出貨是以下單時間為出貨先後的順序,也就是請先下單再查詢庫存,因為就算查完庫存,也可能無法先為你保留書籍(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。
機器學習與人工智慧深度問答集:從基礎到專業,提升AI知識力的30道深度思考題
出版日期:2024-08-25
ISBN:9786263339248
定價:650元
特價: 90 折!585 元
參考分類(CAT):
參考分類(CIP): 電腦科學