 |
|
|
| |
|
科技巨頭的演算法大揭祕:資料科學家必讀的資料科學與機器學習實戰筆記(iThome鐵人賽系列書)【軟精裝】
|
|
|
|
|
|
出版日期:2024-01-03
|
|
ISBN:9786263336681
|
|
定價:680元
特價:90折!612元
|
|
|
|
參考分類(CAT):
|
|
參考分類(CIP): 數值分析
|
|
|
|
|
|
|
|
|
內容簡介 【專業推薦】
「本書非常有結構地介紹現在科技巨頭賴以維生的各種推薦與媒合演算法。內容由淺入深地討論這些科技巨頭如何使用海量數據來揣度人心,闡釋為何看似相同的推薦與媒合問題在不同公司卻有本家家難念的經。」
─ 黃從仁,國立臺灣大學心理學系模型建構與資訊學實驗室
【本書特色】
學習頂尖公司的演算法與資料科學,啟發AI創新應用!
完整蒐集頂尖科技公司的演算法,學習AI世界的經驗精華!
全面解析及整理頂尖科技公司的機器學習模型,借鏡打造AI創新路徑!
♚瞭解資料科學:說明資料科學概念,深入淺出演算法
♚掌握實例應用:學習科技公司技術,掌握各種應用場景
♚運用實戰案例:涵蓋各種機器學習模型來打造實用功能
♚清楚內容編排:針對所需主題閱讀,充分理解演算法概念
【內容簡介】
本書內容改編自第14屆iThome鐵人賽AI& Data組的冠軍系列文章《那些在科技公司和App背後的資料科學》。你是否好奇全球頂尖的科技公司是如何利用資料科學打造出創新且成功的產品呢?本書將會深入介紹Spotify、Meta、Netflix、Uber和Airbnb等科技巨頭如何借助於資料科學和機器學習的技術,來為其產品注入革命性的創新。
本書整理及解析頂尖科技公司的機器模型與應用,內容從閱讀本書所需具備的概念開始,包括推薦系統、多臂式吃角子老虎機、A/B測試及排序模型的常見指標,再分別介紹科技巨頭的演算法內容,如Spotify和Netflix的多媒體內容推薦、Meta的社交內容推薦及排序、Airbnb的搜尋系統及房源排序模型、Uber和Uber Eats的預測模型及推薦系統等,我們將可瞭解這些演算法的理論知識,更可透過案例來學習這些模型是如何應用於實際產品之中。
【目標讀者】
✔想要對科技公司的演算法一探究竟的資料科學家。
✔想借鏡於頂尖科技公司如何利用資料科學,來改善個人的產品或服務的科技產業工作者。
✔想進一步發展自身技能的資料科學家和工程師。
✔對資料科學、科技和創新有濃厚興趣的讀者。 作者介紹 徐歆閔(Min Hsu)
現任職於資安公司的資料科學家,擁有國立臺灣大學的學士和碩士學位,在國際期刊上共發表三篇文章。曾於日本京都大學、加拿大英屬哥倫比亞大學進行研究訪問。
個人熱愛自學和知識分享,於2022年參加iThome鐵人賽,並獲得AI & Data組的冠軍,同時也在Medium和Instagram上進行知識交流。
☛Medium:https://medium.com/smhsu
☛Instagram:@data.scientist.min
【iThome鐵人賽獲獎】
☛AI & Data組冠軍《那些在科技公司和App背後的資料科學》 目次 |Chapter 01| 科技產品演算法的先備知識
1.1 什麼是推薦系統?
1.2 多臂式吃角子老虎機
1.3 A/B測試
1.4 排序模型的常見指標
1.5 參考文獻
|Chapter 02| Spotify
2.1 Spotify的使用者調查
2.2 Spotify的推薦模型:BART模型
2.3 Spotify在推薦播放清單時,同時考量用戶和音樂內容的特徵
2.4 利用用戶的音樂播放紀錄來推薦Podcast節目
2.5 Spotify使用NLP打造Podcast搜尋
2.6 參考文獻
|Chapter 03| Netflix
3.1 Netflix的首頁設計
3.2 Netflix的推薦演算法
3.3 Netflix的首頁生成:內容列的選擇與排序
3.4 Netflix的證據選擇演算法
3.5 Netflix的搜尋系統
3.6 Netflix面臨的挑戰
3.7 參考文獻
|Chapter 04| Meta
4.1 Facebook的用戶調查
4.2 Facebook的貼文推薦產生
4.3 Instagram的不同頁面和其演算法
4.4 參考文獻
|Chapter 05| Airbnb
5.1 Airbnb的搜尋系統
5.2 Airbnb的房源排序模型
5.3 優化房源排序模型來提升個人化推薦
5.4 增加房源排序模型的多樣化
5.5 Airbnb考量屋主喜好來排序搜尋結果
5.6 優化Airbnb搜尋頁面的顯示內容
5.7 Airbnb的新功能:Airbnb Categories
5.8 參考文獻
|Chapter 06| Uber
6.1 Uber的資料蒐集
6.2 Uber的模型
6.3 Uber用DeeprETANet估計外送時間
6.4 Uber Eats
6.5 參考文獻
1、五南網路會員所購買的商品均享有取貨7天的鑑賞期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。
2、依照消費者保護法規定,凡消費者於網站購物均享有7天商品鑑賞期,唯需注意辦理退貨商品需保留完整外包裝、附件、外盒等等,才可辦理退貨。
3、如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。
4、鑑賞期非試用期,若您收到商品經檢視後有任何不合意之處,請立即依照退貨規定辦理退貨
1、若本網站已設團購價,請直接下訂即可。
2、如您需要其他類型產品團購,則請聯繫客服或直接將需求e-mail
至wunan2351960@gmail.com即可
一、購物說明 1.本站商品近60萬筆。(商品圖片、出版日期等相關資訊僅供參考,出貨一律是最新版本) ◎請注意:上架商品不等於一定可以出貨。(會有缺書而訂不到書的狀況,敬請體諒) 2.當您下訂時,我們會向出版訂書(約7-10個工作天)(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。如有久候,敬請見諒。當出版社回覆缺書時,我們只能取消您的訂單。 3.當您下訂時您必須同意:訂單成立的第14天起,因缺某一本書無法出貨的訂單,本站有權利自動取消您的訂單。◎請注意:缺書取消訂單我們統一發送簡訊通知。如果您要部份出貨者,請留言後再重新下單。 4.、本站保留出貨的權利。 二、運費說明 1.宅配到府:滿999元免運費,未滿則加收65元(台灣本島),離島一律加收120元 2.五南門市取貨:未滿350,運費20元 3.揪團:免運費 三、退貨與退款說明 五南會員所購買的商品均享有取貨7天的猶豫期﹝包含國定假日、例假日﹞,退換貨之商品必需於取貨7天內辦理退換貨,否則恕不接受退換貨。 1.請注意!下列商品購買後不提供7天的猶豫期,請務必詳閱商品說明並再次確認確實有購買該項商品之需求及意願時始下單購買,有任何疑問並請先聯繫客服詢問: (1)客製化之商品。 (2)買斷不退之商品。 (3)報紙、期刊或雜誌。 (4)經消費者拆封之影音商品或電腦軟體。 (5)下載版軟體、資訊及電子書。 (6)涉及個人衛生,並經消費者拆封之商品,如:內衣褲、刮鬍刀…等。 (7)藝文展覽票券、藝文表演票券。 (8)易於腐敗、保存期限較短或解約時即將逾期。 2.退貨退款詳細說明: (1)如欲退貨,請在鑑賞期內將商品連同發票寄回,每張訂單限退一次。 (2)退換貨政策:請在收到商品後,立刻檢查商品是否正確,如果有問題或瑕疵,請於7天猶豫期內完成退換貨申請手續。辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 (3)退款說明:請您填寫退貨退款書,若您採信用卡付款,由客服人員辦理刷退手續。若採其他付款方式,我們會將退款,匯款至指定帳戶。以上需要14個工作天。 (4)退貨退款書請至【客服中心】點選『退換商品】的說明中下載。
1.每日09:00前截止訂單,包含出貨通知、缺書通知等。 3.上午9:00點以前下單,可在當日下午17:00以後,查詢出貨進度。例假日除外 4.上午9:00以後在下單,需在隔日17:00以後,方能查詢訂單出貨進度。例假日除外 5.當你使匯款或轉帳時,請務必提供帳戶末5碼之資訊,請拍照email或傳真給我方,否則須等與銀行確認後,才能出貨。 6.出貨是以下單時間為出貨先後的順序,也就是請先下單再查詢庫存,因為就算查完庫存,也可能無法先為你保留書籍(政府出版品因受限於採購程序,平均補貨作業時間約 2~6週)。
|
|
|
|
|
|
 |
科技巨頭的演算法大揭祕:資料科學家必讀的資料科學與機器學習實戰筆記(iThome鐵人賽系列書)【軟精裝】
出版日期:2024-01-03
ISBN:9786263336681
定價:680元
特價:90折!612元
參考分類(CAT):
參考分類(CIP): 數值分析